Using the Dynamic van der Waals theory [1], I discuss evaporation and condensation on gas-liquid interfaces. Examples are evaporation of a liquid droplet on a heated wall [2], spreading of a liquid film on a heated or cooled wall [3], and boiling on a heated wall. While the Marangoni effect is not effective in pure fluids, it can drastically alter transport around droplets in dilute binary mixtures even at very small concentrations [4]. In particular, in boiling, a Marangoni flow is induced by noncondensable gas. We also discuss the bubble formation in water in bulk and near a wall in the presence of a small amount of hydrophobic solute, where a predrying transition line on a hydrophobic wall [5] can be sensitively shifted by impurities.