Photoacoustic Thermoelastic Imaging of Vickers Indented Solids Without and Under External Loading

K.L. Muratikov C.S and A.L. Glazov

A.F. Ioffe Physical-Technical Institute of RAS, St.Petersburg, Russia
klm.holo@ioffe.mail.ru

Great attention is now paid to the development of methods for residual stress detection. The ultrasonic, Raman spectroscopy, magnetic, X-ray, neutron diffraction methods are usually used for this purpose. Recently holographic interferometry based on the hole drilling method has also attracted serious attention for the solution of this problem. These methods have already been implemented effectively for the residual stress detection while the application of most of them is limited substantially by the physical nature of the used effect. The application of the photoacoustic (PA) thermoelastic effect for the diagnostics of mechanical stresses is considered at present with growing interest. The main advantage of the PA thermoelastic method lies in its universal character and in the possibility of application at microscopic and mesoscopic scales.

The problem of residual stress detection by PA and photothermal (PT) methods has been actively discussed for about twelve years but many important details of this problem are not solved up to now. The main task of this talk is to clear up the situation both by experimental and theoretical investigations. Experimental investigations of the work are based on a new multimode approach proposed by us recently which is able to provide an important opportunity to control elastic, thermal and thermoelastic parameters of materials independently and locally. Different types of PA and PT experiments have been performed. They include PA and PT measurements and imaging of regions near Vickers indentations, PA and PT measurements under annealing, and PA and PT imaging of solids under the given external loading. These experiments directly demonstrate the influence of stress on the PA signal and can be used for an estimation of the sensitivity of the PA method to mechanical stresses in different materials.

It is shown that the PA effect in stressed materials is the PA effect of a new nonlinear type. The model of the PA thermoelastic effect in solids with residual stresses is proposed and used for the explanation of the obtained results. It is based on the modified Murnaghan model of nonlinear elastic bodies that takes into account a possible dependence of the elastic and thermoelastic properties of a material on stress. It is demonstrated that the developed theoretical model for the PA piezoelectric effect agrees qualitatively with the available experimental data. The performed theoretical and experimental investigations may result in the development of a scientific base for new NDE methods for residual stress detection.

This research was supported by RFBR (Russia) and CRDF (USA).