Calorimetric Determination of the Standard State Thermodynamic Properties for Aqueous Gadolinium Perrhenate and Gadolinium Chloride up to 623 K

E. Djamali
Center for Hydrothermal Research and Department of Chemistry, San Diego State University, San Diego, CA, U.S.A.
djamali@sciences.sdsu.edu

J.W. Cobble
Department of Chemistry, San Diego State University, San Diego, CA, U.S.A.

The solution of solid gadolinium oxide (cubic) in an excess of a non-complexing strong acid (perrhenic acid) solution was investigated by an integral heat method up to 623 K and at saturation pressure of water [1], from which the standard state partial molal thermodynamic properties for aqueous gadolinium perrhenate were determined. From the measured differences between standard state partial molal thermodynamic properties of aqueous chloride ion [1,2,3] and perrhenate ion [1,4,5] the standard state partial molal thermodynamic properties for aqueous gadolinium chloride [1,6] were obtained by ionic additivity, and corrected by a separate determination of the high temperature hydrolysis [1]. The enthalpy of solution of gadolinium chloride at 623 K and at saturation pressure of water obtained from this research (-2.8 MJ/mol) is apparently larger than any other recorded molar enthalpy of a chemical reaction involving aqueous systems.