Simulation of R-1234yf Performance in a Typical Automotive System

Claudio Zilio
Dipartimento di Fisica Tecnica, Università di Padova, Padova, Italy

J. Steven Brown
Department of Mechanical Engineering, Catholic University of America, Washington, DC, U.S.A.

Alberto Cavallini
Dipartimento di Fisica Tecnica, Università di Padova, Padova, Italy

Simulations are conducted using R-1234yf (2,3,3,3-tetrafluoropropene; CF3CF=CH2) in a typical baseline R-134a small-size European automotive air-conditioning system, where the baseline R-134a system has a nominal cooling capacity of 5.8 kW at a compressor volumetric flow rate of 7.8 m3h⁻¹. If R-1234yf is used as a drop-in replacement in this baseline system, its cooling capacity is 2.0 % lower than the R-134a value, and its COP is 1.0 % lower than the R-134a value. If on the other hand, the two systems are compared at equal cooling capacities, the COP values of the R-1234yf system are 0 % to 4 % lower than the R-134a values over operating conditions from idle to highway speeds. While both systems would benefit from the use of a liquid-line/suction-line heat exchanger, R-1234yf would benefit somewhat more from its use than would R-134a. Also, R-1234yf could benefit from the optimization of the heat exchanger circuitries. The thermodynamic and transport properties of R-1234yf are estimated from Brown et al. (2009a). The simulation results and analyses presented in this paper demonstrate the attractiveness of R-1234yf as a potential replacement for R-134a in automotive applications.