Liquid-Liquid Coexistence Curves Obtained from Refractive-Index Data

Germán Pérez-Sánchez, Patricia Losada-Pérez and Claudio A. Cerdeiriña
Departamento de Física Aplicada, Universidad de Vigo, Ourense, Spain

Mikhail A Anisimov and Jan V Sengers
Departement of Chemical and Biomolecular Engineering and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, U.S.A.

Measurements of the refractive index \(n \) as a function of the temperature \(T \) provide an effective method for investigating the shape of coexistence curves in liquid-liquid phase transitions. To gain useful information from such measurements, experimental \(T-n \) data need to be converted into \(T-x \) and \(T-\rho_x \) data (where \(x \) and \(\rho_x \) stand for the mole fraction and partial density, respectively). For this purpose the Lorentz-Lorenz (LL) equation is commonly employed. The question arises how reliable are such LL-based procedures. Here we address this question by analyzing literature data of \(T-x \) and \(T-\rho_x \) for the coexistence curves of liquid mixtures in the framework of the concept of complete scaling to account for asymmetric criticality [1,2]. In particular, we develop specific fitting procedures which enable us to obtain reliable values for the two coefficients in the expressions for the scaling fields that are responsible for liquid-liquid asymmetry. We shall provide evidence that these asymmetry coefficients are related to the molecular volumes of the two liquid components [3].