Cycle_D Version 4.0: Theoretical Vapor Compression Cycle Design Program

J. Steven Brown
Department of Mechanical Engineering, Catholic University of America, Washington, DC, U.S.A.

Piotr A. Domanski
Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, U.S.A.

Eric W. Lemmon
Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO, U.S.A.

This paper presents Version 4.0 of the CYCLE_D: NIST Vapor Compression Cycle Design Program. The model can simulate a basic subcritical or transcritical refrigeration cycle, both with or without a liquidline/suction-line heat exchanger. In addition, the model can simulate a subcritical two-stage economizer cycle, a subcritical three-stage economizer cycle, and a subcritical two-stage compression cycle with intercooling. The model is a user-friendly tool for screening the performance of single-component refrigerants and refrigerant mixtures.