Structural and Thermodynamic Study Nonlinear Oligophenyls

Ana S. M. C. Rodrigues
Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Porto, Porto, Portugal

Lígia R. Gomes
Universidade Fernando Pessoa, CIAGEB – Faculdade de Ciências de Saúde, Escola Superior de Saúde, Porto, Porto, Portugal

Luís M. N. B. F. Santos
Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Porto, Porto, Portugal
lbsantos@fc.up.pt

This work involves the thermodynamic and structural study of some nonlinear oligophenyls (*ortho*-quaterphenyl, *meta*-quaterphenyl, *ortho*-quinquephenyl and *meta*-quinquephenyl). The compounds were synthesized using the Suzuki-Miyaura methodology [1] and characterized by single crystal X-ray diffractionmetry. The thermodynamic properties for fusion were measured by DSC and the molar heat capacities, at $T = 298.15 \text{ K}$, were measured by means of a precise drop heat capacity calorimeter [2]. The standard molar enthalpies of sublimation, at $T = 298.15 \text{K}$, were determined using the Calvet microcalorimetry drop method. The standard ($p^\circ = 0.1 \text{ MPa}$) enthalpies of combustion, for the *ortho* and *meta* isomers were measured by mini-bomb combustion calorimetry [3]. The energetic and structural results allowed to perform the evaluation of the effect of the relative positions (*ortho* and *meta*) of the phenyl groups in the thermophysical properties of the compounds. With the exception of the terphenyl isomers, the temperature of fusion for the *ortho* series is always higher than the *meta* series. A subtle odd/even effect was found for the *ortho* series in the fusion temperatures and in the gaseous phase energetics that could be related with the intramolecular interactions.

Acknowledgements: Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal and to FEDER for financial support to Centro de Investigação em Química, University of Porto. Ana S. M. C. Rodrigues acknowledge the financial support from FCT and the European Social Fund (ESF) under the Community Support Framework (CSF) for the award of a Research Grant SFRH/BD/81261/2011.