This research was designed to examine a comparative study of the thermodynamic properties of aqueous solutions of 2,3-pyridyl and piperidine methanols. The density and excess volumes of mixing as a function of temperature (T = 293.15-318.15 K) over the entire concentration range are investigated for aqueous solutions of 2,3-pyridyl methanols, and the density and partial molar volumes of aqueous solutions are investigated for 2,3-piperidine methanols. The minimum values, -0.59 cm3/mole for 2-pyridylcarbinol-water solutions and -0.47 for 3-pyridylcarbinol-water solutions, of are observed. These are about 0.61% and 0.49 % respectively, of the molar volume. The thermal expansion coefficients a_T at selected temperatures calculated from the density studies, exhibited significant positive deviations, (about 82% , and 47%) from ideality for 2-pyridylcarbinol-water mixtures, and 3-pyridylcarbinol-water mixtures, respectively. The partial molar volume of 2,3-piperidine methanols in water at selected temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to $m= 0$. In addition, the partial molar expansivity, E^o, the isobaric coefficient of thermal expansion, a_T, the interaction coefficient, S_v, and the Heppler’s constant have also been computed. The data interpreted in terms of the greater number of opportunities for hydrogen bonding interactions between the unlike molecules for 2,3-pyridyl and piperidine methanols.