A Spectral-Directional Emissometer for Measurements of Thermal Emission from Microstructured Surfaces

Liping P. Wang and Zhuomin M. Zhang
Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, U.S.A.
zhuomin.zhang@me.gatech.edu

A spectrometric emissometer has been developed for the measurement of polarization-dependent angle-resolved emittance of thin-film and microstructured surfaces. The main components include a heater assembly, blackbody source, optical components, and a Fourier-transform infrared (FTIR) spectrometer, which is used to collect the emission spectra from either the sample or the blackbody. A wire-grid IR polarizer is placed next to an iris to allow either transverse electric (TE) or transverse magnetic (TM) waves to pass through. The emission angle can be varied from 0 to 45°, and the half-cone angle of the collected beam from the sample is approximately 3°. A DTGS detector can be used at temperatures higher than about 700 K in the wavelength region from about 2 to 20 micrometers, while a liquid-nitrogen-cooled InSb detector with a higher detectivity can be used at temperatures above 500 K at wavelengths from 2 to 5.5 micrometers. The emissometer was calibrated with materials of known emittance such as a SiC wafer. The overall uncertainty of the emittance measurement was estimated to be 0.03. The measured results of coherent thermal emission from multilayered structures, based on Fabry-Perot cavity resonances, and a microfabricated grating structure, based on magnetic resonances, will be presented. The different mechanisms that give rise to the emittance peaks and spectral control of thermal emission will be elucidated.