Liquid-Liquid Phase Equilibrium of Two Ionic Liquids

Catarina M. S. S. Neves
Departamento de Química, CICECO, Universidade de Aveiro, Aveiro, Portugal

Artur M. S. Silva and Ana M. Fernandes
QOPNA & Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Mara G. Freire and João A. P. Coutinho
Departamento de Química, CICECO, Universidade de Aveiro, Aveiro, Portugal
jcoutinho@ua.pt

The unique properties of ionic liquids (ILs), such as a negligible vapour pressure, high chemical and thermal stabilities, wide liquidus temperature range, and the possibility of fine tuning their properties through appropriate cation/anion combinations make of them viable candidates to replace the common organic and volatile solvents currently used in an extensive range of industrial applications [1]. In fact, there are circa 600 different organic solvents used by industry while there are one million of possible combinations of ions or different ionic liquids [1]. In particular, ionic liquids have been designated as potential solvents for “clean” liquid-liquid extractions [2]. Therefore, the search on novel biphasic systems composed of two ionic liquids, while comprising the determination of their liquid-liquid equilibrium, allows the creation of a new plethora of separation processes constituted only by non-volatile solvents. In this work, immiscible mixtures of cholinium- and phosphonium-based ionic liquids were investigated and their phase diagrams were determined from 40°C to 150°C. Nuclear Magnetic Resonance (NMR) and Electrospray Ionisation - Mass Spectrometry (ESI-MS) were used as analytical techniques for the quantification of each ion/ionic liquid and for the evaluation of the ionic exchange extension in such mixtures.

Acknowledgements

This work was financed by national funding from FCT- Fundação para a Ciência e a Tecnologia, through the projects PTDC/AAC-AMB/119172/2010 and PEst-C/CTM/LA0011/2013. C.M.S.S. Neves also acknowledges FCT for the SFRH/BD/70641/2010 PhD grant. M. G. Freire acknowledges the European Research Council (ERC) for the Starting Grant ERC-2013-StG-337753.

References