Au-Water Nanofluid:
Experimental Measurements and Numerical Simulation of the Yearly Yield
of a Parabolic Trough Collector

Gianluca Coccia
Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University, Ancona,
Italy

Laura Colla and Laura Fedele
Construction Technologies Institute, National Research Council, Padova, Italy
laura.colla@itc.cnr.it

Giovanni Di Nicola
Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University, Ancona,
Italy

Antonella Barizza
Construction Technologies Institute, National Research Council, Padova, Italy

In recent years, nanofluids, i.e. dispersions of solid particles into common fluids, have been studied to enhance the
efficiency and performance of the solar thermal systems due to their enhanced thermophysical properties. In this
work, thermal conductivity and dynamic viscosity of a water based gold nanofluid were measured and the
nanoparticle stability was investigated. Experimental data were used as input for a numerical simulation to analyze
the effects of nanofluids on the performance of a parabolic trough solar collector (PTC). Here, a direct comparison
with the base fluid is provided in order to prove the convenience in the adoption of nanofluid as energy media.