Measurement of Binary Diffusion Coefficients of CO$_2$ in Several Liquid Alkanes

Shane Cadogan, J. P. Martin Trusler and Geoffrey Maitland
Qatar Carbonates and Carbon Capture Research Centre, Imperial College London, London, United Kingdom
m.trusler@ic.ac.uk

Diffusion coefficients of CO$_2$ in hydrocarbons is relevant to many disciplines, with the field of enhanced oil recovery being one contemporary example. Diffusion not only plays a central role in mass transport in porous material at low flow rates but is also one of the determining factors in the rate of absorption of CO$_2$ into the reservoir fluids. However there is a lack of reported measurements in the literature for CO$_2$-hydrocarbon mixtures under relevant (HTHP reservoir) condition. The Taylor dispersion technique has been used to measure diffusion coefficients of CO$_2$ in a homologous series of alkanes over a range of temperatures, (298 – 423) K and pressures from (1 to 69) MPa. Six hydrocarbons, ranging from hexane to hexadecane, were studied as representative model components of a typical reservoir fluid. Measurements were performed using a Taylor dispersion apparatus. The results have an estimated relative uncertainty of 1.5% with a coverage factor of 2. It is found that, in contrast to aqueous systems where there is a negligible effect of pressure on the measured diffusion coefficients, diffusion of CO$_2$ in hydrocarbons is a strong function of pressure, with up to a 45% decrease in values between (1 and 69) MPa at a given temperature. The data have been correlated using a model based on the rough hard sphere theory. This correlation requires knowledge of the molar volume of the solvent at the specific state point and two fitted parameters. The effect of the solvent on the two fitted parameters will be discussed further.