Critical and Non-Critical Mesoscopic Inhomogeneities in Solutions of the Protic Ionic Liquid Ethyl Ammonium Nitrate and Pentanol

Olga Russina

Dipartimento di Chimica, Università di Roma Sapienza, Rom, Italy

Wolfram Schroer C.S.

Fachbereich Biologie-Chemie, Universität Bremen, Bremen, Germany

Bernd Rathke

Technische Thermodynamik, Universität Bremen, Bremen, Germany

Alessandro Triolo

Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy

Mesoscopic inhomogeneities in binary mixtures of ethyl-ammonium nitrate (EAN), a protic ionic liquid, and pentanol are investigated using Small Angle X-ray Scattering as a function of concentration and temperature ranging from 193 to 313 K. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network; however, though macroscopically homogeneous, their mixtures are heterogeneous at the mesoscopic spatial scales. Two different species of mesoscopic inhomogeneities are observed: Critical concentration fluctuations, as observed in EAN/Octanol mixtures [1], and inhomogeneities caused by separation into ionic and non-ionic regions. The latter ones have been predicted by simulation [2] and verified experimentally [3] in ionic liquids containing cations with long hydrocarbon chains. In pure EAN such structuring into ionic and non-ionic regions gives rise to a band centred near \(Q = 6.2 \text{ nm}^{-1} \) [4]. A similar band at \(Q = 5.2 \text{ nm}^{-1} \) is also observed in pentanol, suggesting a segregation into polar and non-polar regions. In mixtures the inhomogeneity bands of EAN and pentanol match. When approaching the critical composition near the mole fraction \(x = 0.5 \) and lowering the temperature towards the critical temperature, the inhomogeneity band merges with a band centred at \(Q=0 \) that increases, when approaching the critical region. The concentration and temperature dependence of the \(Q=0 \) band have the characteristic features for critical fluctuations near the liquid-liquid upper critical solution point, and is thus attributed to critical concentration fluctuations. The critical temperature is estimated by extrapolation to \(T_c \approx 190 \text{ K} \), which is located inside the solid phase and thus cannot be reached in the experiment.

References