Ideal-Gas Thermodynamic Properties of Urea

Vladimir Diky and Andrei F. Kazakov

Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, U.S.A.

akazakov@nist.gov

Ideal-gas thermodynamic properties of urea computed using experimental vibrational spectrum from matrix-isolated urea sample [1] and assuming C_{2v} symmetry were found in good agreement with entropy data observed experimentally [2]. The reported low-frequency absorption band of 227 cm\(^{-1}\) assigned to NH\(_2\) group inversion and mainly responsible for the observed agreement, however, is not confirmed by the subsequent microwave study and quantum-chemical calculations at the MP2/6-311++G** level [3]. Non-planar stereoisomers of urea with C\(_2\) and C\(_5\) symmetry were identified. The lowest vibrational frequency for the most stable (C\(_2\)) structure was predicted to be 385 cm\(^{-1}\), much higher than obtained in matrix isolation experiments. In this report, we present new quantum chemical calculations and detailed statistical-mechanical analysis aimed to reconcile the experimental and theoretical findings. A particular consideration is given to suggested anharmonicity effects [3] of NH\(_2\) inversion modes.

References