Saturated and Compressed Liquid Heat Capacity at Constant Volume for 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

Nikolai Polikhronidi and Rabiyat Batyrova
Russian Academy of Sciences, Institute of Physics, Makhachkala, Dagestan, Russia

Ilmutdin Abdulagatov and Joseph Magee
Applied Chemicals and Materials Division, NIST, Boulder, Colorado, U.S.A.
joe.magee@nist.gov

Jiangtao Wu
Key Laboratory of Thermo-Fluid Science and Engineering of MOE, Xi’an Jiaotong University, Xi’an, Shanxi, China

With the goal of developing a reference equation of state for ionic liquid (IL) 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at conditions for one-phase liquid and for two-phase liquid + vapor equilibrium, isochoric heat capacities (C_v) were reported for the first time [1]. The substance studied is often abbreviated [C6mim][NTf2] and is the already well-studied IUPAC reference IL. Measurements were conducted over the temperature range from (330 to 480) K and pressures up to 20 MPa using a high-temperature, high-pressure, nearly constant-volume adiabatic calorimeter. As useful byproduct of the measurement, densities were reported as a function of temperature and pressure. Measurements were made along liquid isochores in the range between 1218 kg⋅m$^{-3}$ and 1279 kg⋅m$^{-3}$. Furthermore, measurements were concentrated near the liquid-gas phase transition curve in order to closely observe phase changes. The values of temperature at the liquid-gas phase transition curve for each measured isochoke (phase transition parameters, ρ_s, T_s) were obtained by analysis of quasistatic thermograms (readings of reference quality thermometer, $T-\tau$ plot, where τ is elapsed time) and barograms (readings of pressure transducer, $P-\tau$ plot). The combined expanded uncertainties of the density, ρ, and isochoric heat capacity, C_v, measurements at a 95 % confidence level with a coverage factor of $k = 2$ are estimated to be 0.06 % and 2.0 %, respectively. The combined expanded uncertainty of the phase-transition temperature is 0.02 K.

One-phase (C'_{v1}) and two-phase (C'_{v2}) liquid isochoric heat capacities at saturation and saturation liquid densities (ρ'_s) of IL ([C6mim][NTf2]) were measured. The measured values of saturated caloric (C'_{v1}, C'_{v2}) and saturated thermal (ρ_s, T_s) properties were used to derive thermodynamic properties including (C_p, C_v, W, K_T, ΔH_{vap}, $(\partial P/\partial T)'_{v}$, and $(\partial V/\partial T)'_{p}$) of [C6mim][NTf2] at saturated liquid conditions. In addition, the second temperature derivatives of the vapor pressure (d^2P_s/dT^2) and the chemical potential ($d^2\mu_s/dT^2$) at liquid + vapor conditions, and the second temperature derivative of pressure at compressed liquid conditions (d^2P/dT^2)$_p$ were calculated directly from the measured one- and two-phase isochoric heat capacity data. Values of (d^2P_s/dT^2) and (d^2P/dT^2)$_p$ derived from calorimetric measurements were compared with the values calculated from vapor-pressure equations and from an IUPAC reference equation of state for this substance.

References