Hallmarks of the Weyl State: Violation of Ohm’s Law and Wiedemann-Franz Law in Sb-Doped Bi

Dongwoo Shin, Yongwoo Lee, Yoon H. Jeong C, S, Kiseok Kim and Jeehoon Kim
Department of Physics, POSTECH, Pohang, Korea
yhj@postech.ac.kr

Weyl fermions, massless chiral fermions in quantum field theory, are also realized in solid state physics; they appear in certain crystals without time reversal or inversion symmetry called Weyl (semi)metals [1]. The electronic band structure of a Weyl metal contains Weyl nodes, pairs of singular points separated in momentum space, at nondegenerate band touch. Spin and momentum are locked except at nodes, and thus chirality is well defined. Due to the existence of a pair of chiral Fermi surfaces, the electromagnetic and transport properties of Weyl metals are strongly influenced by the topological $E\cdot B$ term. Transport properties of Weyl metals, particularly their magnetoelectric and magnetothermal conductivities are expected to show distinct behaviors of topological origin. Theoretical investigations of electrical (σ) and thermal (k) conductivities of Weyl metals, based on Boltzmann transport theory with Berry curvature and chiral anomaly terms, predict that σ and k are enhanced by a magnetic field proportional to B^2 when the electrical or thermal current direction is parallel to the field B [2, 3]. Even more striking is that Ohm’s law in electrical conductivity is expected to break down and the Wiedemann-Franz (WF) law would also fail when E is parallel to B. Ohm’s law indicates a linear I-V relationship while the WF law states that $k/sT = L_0$, where L_0 is the Lorentz number; these laws hold generally in ordinary metals. We have grown single crystals of bismuth antimony alloy, Bi$_{1-x}$Sb$_x$, which becomes a 3D Dirac metal with time reversal symmetry at $x \sim 0.04$. When a magnetic field is applied, time reversal symmetry is broken and the Dirac metal becomes a Weyl metal. We have measured σ and k without and with B up to 9 T. We indeed observed the breakdown of Ohm’s law and the magnetic enhancements of σ and k when B is in parallel with electrical and thermal currents [4]. We discuss the details of the measurements and compare the experimental data with theoretical predictions.

References: