Density Measurement of a Co-Cr-Mo Melt with an Electromagnetic Levitation Technique in a Static Magnetic Field

Yuki Takahashi3 and Makoto Ohtsuka

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

Yuichiro Koizumi, Yufan Zhao and Akihiko Chiba

Institute for Materials Research, Tohoku University, Sendai, Japan

Hiroyuki Fukuyamac

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
hiroyuki.fukuyama.b6@tohoku.ac.jp

Co-Cr-Mo alloy is widely used as an orthopedic and dental implant material because it has excellent corrosion resistance, wear resistance, and good biocompatibility. Recently, the alloy was fabricated by additive manufacturing with electron beam melting [1, 2]. Simulation of the melting and solidification process of this alloy needs thermophysical properties in the liquid state. The purpose of this study is to measure the density of the Co-Cr-Mo alloy (ASTM F75) in the liquid state. The liquidus temperature of the alloy was obtained by differential scanning calorimetry. The density of the Co-Cr-Mo melt was measured over a wide temperature range from the supercooled region to 100 K above the liquidus temperature with an electromagnetic levitation technique in a static magnetic field [3]. A radiation thermometer was calibrated by the liquidus temperature. The density of Co-Cr-Mo melt monotonically decreased with increasing temperature, and mass loss of the sample during the measurement was within 0.5 - 1 mass % owing to evaporation.

Acknowledgement:

This research was supported by a research grant from JSPS KAKENHI Grant Number JP17H01329.

References: