Thermal Diffusivity and Critical Behavior of RSc(Si, Ge) (R=rare earth) Intermetallic Compounds

Alberto Oleaga C. S and Aritz Herrero
Applied Physics I Department, University of the Basque Country UPV/EHU, Bilbao, Spain
alberto.oleaga@ehu.es

Pietro Manfrinetti and Alessia Provino
Department of Chemistry, University of Genova, Genova, Italy
Institute SPIN-CNR, Genova, Italy

Agustin Salazar
Applied Physics I Department, University of the Basque Country UPV/EHU, Bilbao, Spain

The intermetallic family RTX (R = rare earths, T = 3d/4d/5d transition metals and X = p-block elements such as Al, Ga, In, Si, Ge, Sn, As, Sb, Bi) is attracting increasing interest because many of them present a large magnetocaloric effect as well as magnetoresistance. A thorough knowledge of their physical properties is needed in order to fully evaluate their potential. In this work, we are focusing on RSc(Si, Ge) (R = Nd, Pr, Gd, Sm) where the critical behavior of the magnetic transitions (some of them are ferromagnetic, some others, antiferromagnetic) has been studied by means of ac photopyroelectric calorimetry in the standard back configuration. The retrieved thermal diffusivity has been fitted to the models corresponding to the different universality classes predicted by renormalization group theory, studying the changes from short to long range order as well as the (an)isotropy of the spin ordering. The different role played by Si and Ge in the indirect exchange interaction of the 4f-subshells of the rare earth ions through hybridization of the 3d-electrons of Sc atoms and the p-electrons of Si and Ge atoms is discussed for samples with different rare earths. The discussion is completed with magnetic measurements which allow retrieval of complementary critical exponents, which are in agreement with the ones obtained from the thermal measurements.